
Позиционные задачи

Методические указания по дисциплине «Начертательная геометрия»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный политехнический университет»

Кафедра инженерной и компьютерной графики

Позиционные задачи

Методические указания по дисциплине «Начертательная геометрия»

В методических указаниях рассматриваются позиционные задачи на проецирование точки, прямой, плоскости. Рассматривается положение точки, прямой, плоскости относительно плоскостей проекций и вза-имное расположение прямых и плоскостей относительно друг друга.

Методические указания предназначены для студентов всех инженерных специальностей очной и заочной форм обучения, изучающих курс «Начертательная геометрия».

Составители: канд. техн. наук, доц. Т.Н. Фомичева д - р техн. наук, проф. Е.Н. Никифорова

Научный редактор канд. техн. наук, доц. П.Е. Тюрин Редактор Н.Е. Бочкарева

Подписано в печать 5.04.2016 Формат 118 60х84· Плоская печать. Усл. печ. л. 3, 26. Уч.- изд. л. 1, 6. Тираж 30 экз. Заказ №

ФГБОУ ВО «Ивановский государственный политехнический университет» Издательский центр ДИВТ 153000 г. Иваново, Шереметевский просп., 21

Введение

Начертательная геометрия — это один из разделов геометрии, в котором пространственные фигуры (совокупность точек, линий, поверхностей) изучаются с помощью их изображения на плоскости. При решении задач надо иметь в виду, что начертательная геометрия оперирует не с самими геометрическими фигурами, а с их проекциями, и требование условия «построить», «определить», «найти» и т.п. означает, что нужно построить проекции (не менее двух) искомых геометрических фигур.

В курсе начертательной геометрии можно выделить три основных класса задач: позиционные, метрические и комбинированные. Задачи каждого класса имеют свои особенности и соответствующие им приемы решения.

Любую задачу, независимо от ее принадлежности к тому или иному классу, нужно сначала решить в пространстве — уяснить содержание и последовательность тех пространственных операций, при помощи которых определяются искомые элементы. В некоторых случаях для этого можно использовать модели или наглядные изображения.

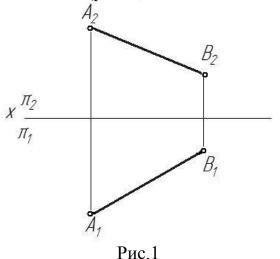
В данных методических указаниях рассмотрены примеры решения элементарных позиционных задач на проецирование точки, прямой и плоскости. Для проверки усвоения предложенного материала предусмотрено выполнение двух графических работ.

Принятые обозначения

- 1. Точки пространства обозначаются прописными буквами латинского алфавита или арабскими цифрами: A, B, C, D, ..., L, M, N, ...; 1, 2, 3, ..., 9, 10,
- 2. Линии пространства обозначаются строчными буквами латинского алфавита: a, b, c, ..., k, l, m, ...
- 3. Плоскости пространства обозначаются строчными буквами греческого алфавита: α , β , γ , ..., σ , ε , φ , ...
- 4. Плоскости проекций обозначаются строчной буквой греческого алфавита π :
 - $\pi_{\it I}$ горизонтальная плоскость проекций;
 - π_2 фронтальная плоскость проекций;
 - π_3 профильная плоскость проекций.
- 5. Проекции геометрической фигуры (точки, линии, плоскости, поверхности) на соответствующую плоскость проекций обозначаются той же буквой или цифрой, что и геометрическая фигура пространства, с нижним индексом, соответствующим плоскости проекций. Например;
 - A_{I} проекция точки A на горизонтальную плоскость проекций π_{1} ;
 - b_2 проекция линии b на фронтальную плоскость проекций π_2 ;
 - α_3 проекция плоскости α на профильную плоскость проекций π_3 .

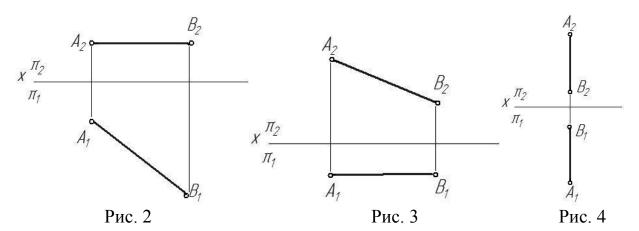
Понятие о позиционных задачах

Позиционные задачи — это задачи, решение, которых должно давать ответ на вопрос о взаимном расположении геометрических объектов как по отношению друг к другу, так и относительно системы координатных плоскостей проекций. Позиционные задачи делятся на две группы:

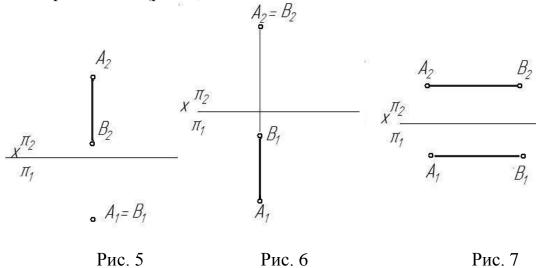

- 1) задачи на принадлежность;
- 2) задачи на пересечение.

В начале рассмотрим положение прямых и плоскостей относительно плоскостей проекций.

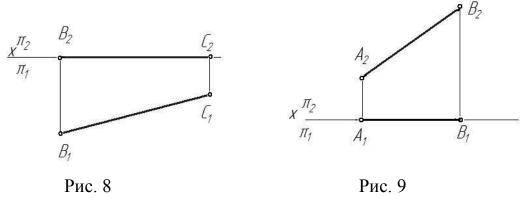
Положение прямых относительно плоскостей проекций


В зависимости от положения относительно плоскостей проекций прямые делятся на прямые общего положения и прямые частного положения.

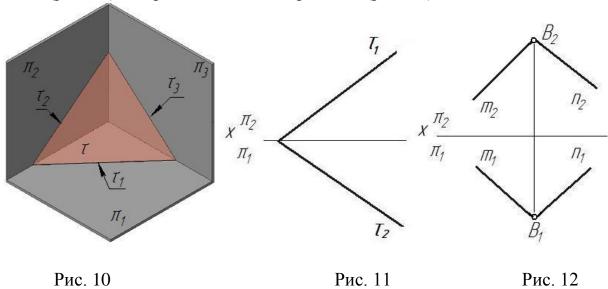
Прямую, непараллельную ни одной из плоскостей проекций, называют *прямой общего положения* (рис. 1).



Прямые частного положения


- 1. *Линии уровня* это прямые, параллельные одной из плоскостей проекций. Таких прямых три.
- а) Горизонталь прямая, параллельная горизонтальной плоскости проекций π_1 (рис. 2).
- б) Фронталь прямая, параллельная фронтальной плоскости проекций π_2 (рис. 3).
- в) Профильная прямая уровня прямая, параллельная профильной плоскости проекций π_3 (рис. 4).

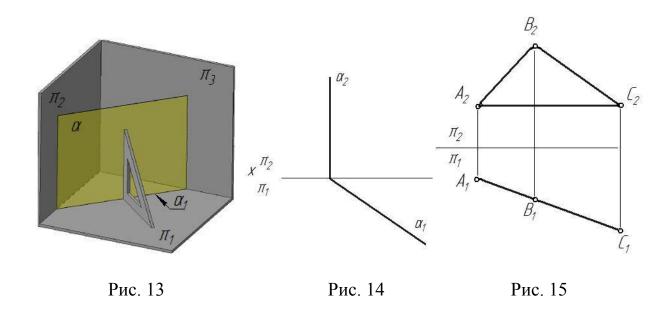
- 2. Проецирующей прямой (дважды постоянного уровня) называется прямая, перпендикулярная одной из плоскостей проекций.
- а) Горизонтально проецирующая прямая перпендикулярна горизонтальной плоскости проекций π_1 (рис. 5).
- б) Фронтально проецирующая прямая перпендикулярна фронтальной плоскости проекций π_2 (рис. 6).
- в) Профильно проецирующая прямая перпендикулярна профильной плоскости проекций π_3 (рис. 7).


- 3. Прямые, расположенные в плоскостях проекций π_1 и π_2 : -
- а) Прямая, принадлежащая плоскости проекций π_1 (рис.8).
- б) Прямая, принадлежащая плоскости проекций π_2 (рис.9).

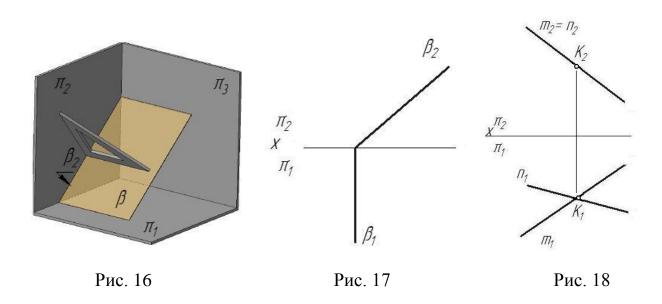
Положение плоскостей относительно плоскостей проекций

Относительно плоскостей проекций плоскости могут занимать в пространстве общее и частное положение. Плоскость, которая расположена наклонно ко всем плоскостям проекций, т.е. занимающая произвольное положение по отношению к плоскостям проекций, называется *плоскостью общего положения*. На рис. 10 обозначены следы плоскости τ (τ_1 — горизонтальный, τ_2 - фронтальный, τ_3 - профильный). *Следом плоскости* называется прямая пересечения плоскости с плоскостью проекций.

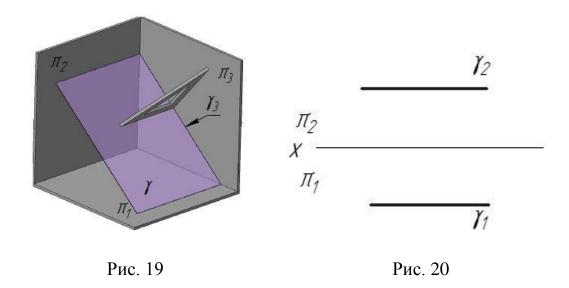
На комплексном чертеже плоскость общего положения задана следами (рис. 11) и пересекающимися прямыми (рис. 12).



Плоскости частного положения


Все плоскости частного положения являются проецирующими, т.е. в пространстве они могут быть перпендикулярны к одной или двум плоскостям проекций.

Плоскость, перпендикулярная к одной плоскости проекций, называется проецирующей плоскостью.


1. Горизонтально проецирующая плоскость — это плоскость перпендикулярная плоскости проекций π_1 . На рис. 13 приведено наглядное изображение горизонтально проецирующей плоскости. На рис. 14 горизонтально проецирующая плоскость задана следами. Горизонтальные проекции точек, линий, плоских фигур, лежащих в горизонтально проецирующей плоскости, будут принадлежать горизонтальному следу α_1 этой плоскости. В этом случае говорят, что след обладает собирательным свойством. На рис. 15 изображена горизонтально проецирующая плоскость, заданная треугольником.

2. Фронтально проецирующая плоскость — это плоскость перпендикулярная плоскости π_2 . На рис. 16 приведено наглядное изображение фронтально проецирующей плоскости, на рис. 17 плоскость задана следами (фронтальный след β_2 обладает собирательным свойством), а на рис. 18 пересекающимися прямыми.

3. Профильно проецирующая плоскость – это плоскость, перпендикулярная плоскости π_3 . На рис. 19 приведено наглядное изображение профильно проецирующей плоскости, на рис. 20 плоскость задана следами (профильный след γ_3 обладает собирательным свойством).

Плоскость, параллельная плоскости проекций, называется *плоскостью уровня*.

1. Горизонтальная плоскость уровня — плоскость параллельная горизонтальной плоскости проекций π_1 . На рис. 21 горизонтальная плоскость β задана следами (фронтальным следом), на рис. 22 горизонтальная плоскость задана пересекающимися прямыми.

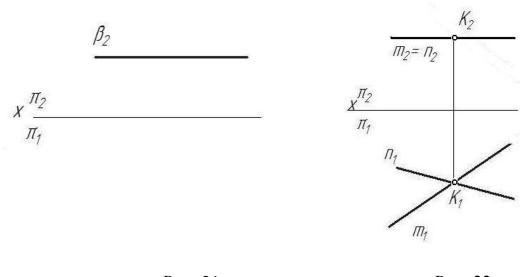
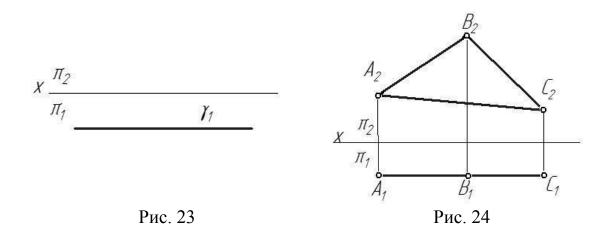
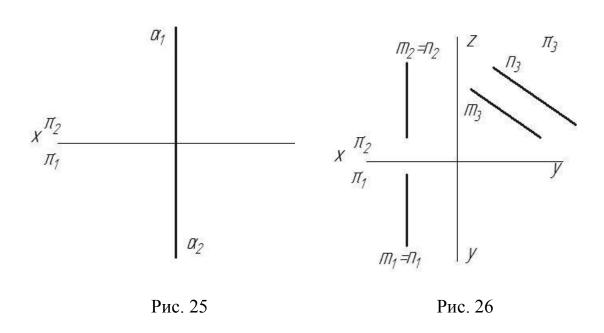




Рис. 21 Рис. 22

2. Фронтальная плоскость уровня — плоскость, параллельная фронтальной плоскости проекций π_2 . На рис. 23 фронтальная плоскость γ задана следами (горизонтальным следом), на рис. 24 фронтальная плоскость задана плоской фигурой (Δ ABC).

3. Профильная плоскость — плоскость, параллельная профильной плоскости проекций π_3 . На рис. 25 профильная плоскость α задана следами, на рис. 26 профильная плоскость задана параллельными прямыми.

Взаимное положение двух прямых в пространстве

Прямые в пространстве могут быть параллельны, могут пересекаться и скрещиваться.

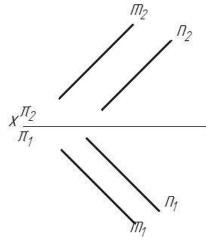
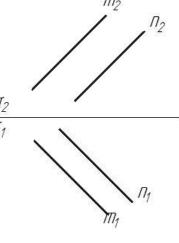



Рис. 27

2. Если две прямые пересекаются в пространстве (рис. 28), т.е. имеют одну общую точку K, то на комплексном чертеже их одноименные проекции пересекаются в точках K_1 и K_2 , расположенных на одной линии связи.

1. Если в пространстве две прямые

параллельны друг другу, то их одноимен-

ные проекции параллельны (рис. 27).

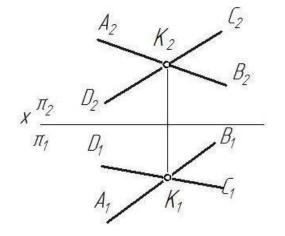
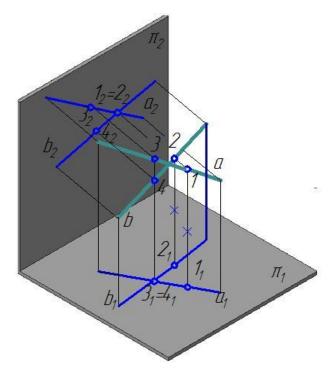



Рис. 28

3. Если прямые скрещиваются в пространстве (т.е. не параллельны и не пересекаются), то точки пересечения их проекций не расположены на одной на рис. 29 приведено линии связи, глядное изображение скрещивающихся прямых. На рис. 30 - комплексный чертеж скрещивающихся прямых.

Рис. 29

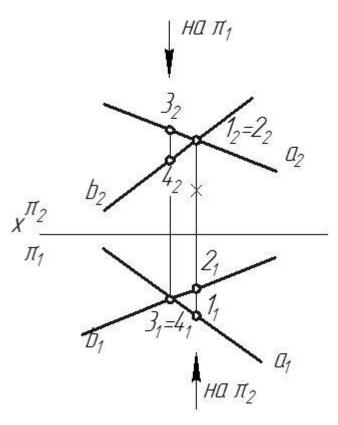


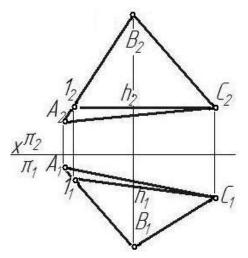
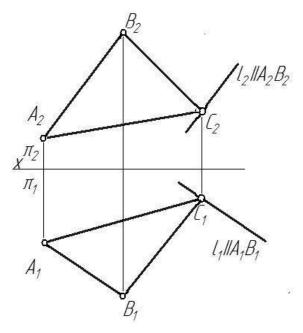
Рис. 30

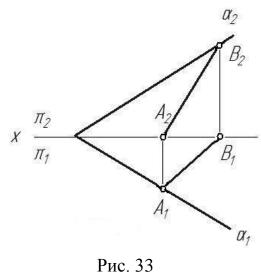
Точке пересечения фронталь ных проекций прямых соответствуют две точки 1 и 2, одна из которых принадлежит прямой а, другая – прямой b. Их фронтальные проекции совпадают ($1_2=2_2$). Такие точки, находящиеся на одной линии связи (одном проецирующем луче) называются конкурирующими. Например, точки 1 и 2 одинаково удалены от пл. проекций π_1 (на рис. 30 отмечено x), но расстояния их от пл. π_2 различны: точка 1 находится дальше от пл. π_2 , чем точка 2. При взгляде на пл. π_2 точка 1 закрывает точку 2, следовательно, точка 1 является видимой. Аналогично при взгляде на пл. π_1 точка 3 закрывает точку 4.

Взаимное положение прямой и плоскости, двух плоскостей

Возможны следующие варианты взаимного положения прямой и плоскости, а также двух плоскостей.

Прямая и точка, принадлежащие плоскости


Рис. 31

1. Прямая принадлежит плоскости, если две ее точки лежат в этой плоскости. На рис. 31 изображена горизонталь, принадлежащая плоскости, заданной Δ *ABC*. Горизонталь h принадлежит плоскости, так как проходит через вершину треугольника C и пересекает сторону AB в точке I.

2. Прямая принадлежит плоскости, если она проходит через точку плоскости и параллельна прямой, лежащей в этой плоскости (рис. 32). Прямая l проходит через точку C и параллельна прямой AB.

Рис. 32

. 3. Прямая принадлежит плоскости, если ее следы лежат на одноименных следах плоскости (рис. 33) фронтальный след прямой B_2 с α_2 , а горизонтальный след прямой A_2 с α_2 .

4. Точка принадлежит плоскости, если она лежит на прямой, принадлежащей этой плоскости.

Прямые особого положения в плоскости

- 1. Линии уровня плоскости
- а) Горизонталь прямая, лежащая в плоскости и параллельная горизонтальной плоскости проекций π_1 .
- б) Фронталь прямая, лежащая в плоскости и параллельная фронтальной плоскости проекций π_2 .

На рис. 34 изображен макет плоскости, на котором показаны горизонталь, фронталь и линия наибольшего ската.

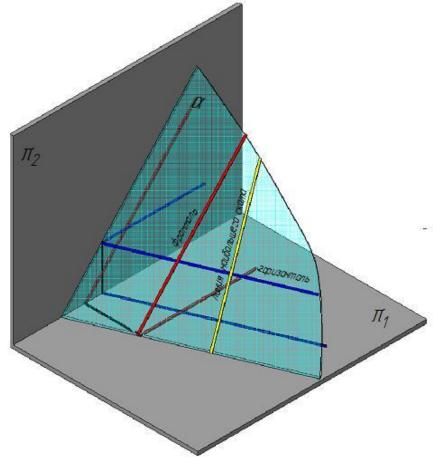
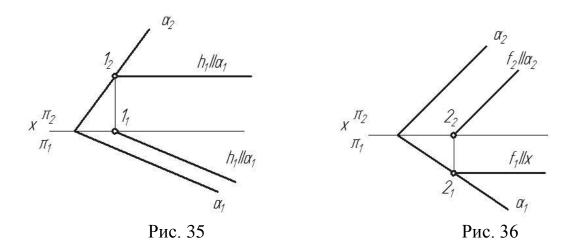



Рис. 34

На рис. 35 и 36 изображены соответственно горизонталь и фронталь в плоскости, заданной следами.

На рис. 37 показаны горизонталь h и фронталь f плоскости, заданной Δ ABC.

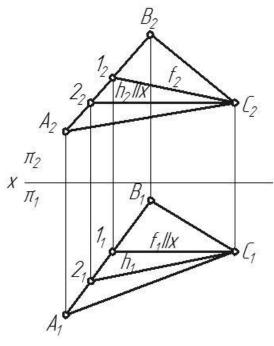


Рис. 37

2. *Линии наибольшего наклона* плоскости – это прямые плоскости, перпендикулярные к линиям уровня.

Прямая перпендикулярная горизонтали — линия наибольшего наклона к плоскости π_1 . Такую линию называют еще линией ската. Прямая перпендикулярная фронтали — линия наибольшего наклона к плоскости π_2 . Прямая

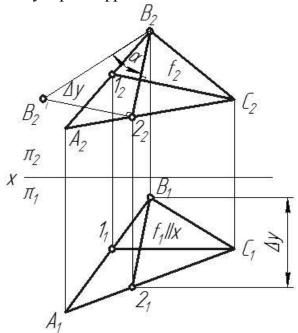


Рис. 38

перпендикулярная к профильной прямой — линия наибольшего наклона к плоскости π_3 . Линии наибольшего наклона перпендикулярны к следам плоскости. С помощью линий наибольшего наклона определяют углы наклона плоскостей общего положения к плоскостям проекций.

На рис. 38 определен угол наклона плоскости Δ *ABC* к плоскости проекций π_2 . В Δ *ABC* проведена фронталь и построена фронтальная проекция линии ската $B_2 2_2$, перпендикулярная f_2 , затем построена горизонтальная проекция линии ската $B_1 2_1$. Угол наклона α определен способом прямоугольного опорного треугольника. В плоскости π_1 определена разница координат Δ у между точками B_1 и 2_1 . Полученная разница Δ у отложена под прямым углом к отрезку $B_2 2_2$ в точке 2_2 . Конец полученного отрезка соединен с точкой B_2 , угол α является углом наклона плоскости Δ ABC к плоскости π_2 .

Параллельность прямой и плоскости, двух плоскостей

1. *Прямая параллельна плоскости*, если эта прямая параллельна любой прямой в этой плоскости.

Через заданную точку в пространстве можно провести бесчисленное множество прямых линий, параллельных заданной плоскости. Для получения единственного решения требуется дополнительное условие. Например, через точку K (рис. 39) провести прямую, параллельную плоскости, заданной Δ ABC и плоскости проекций π_2 (дополнительное условие). Искомая прямая должна быть параллельна фронтали плоскости, заданной Δ ABC. Строим фронталь C1 и проводим через т. K прямую, параллельную C1.

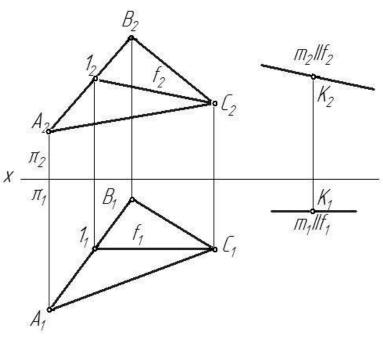


Рис. 39

2. Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым второй плоскости, то такие *плоскости параллельны*. У параллельных плоскостей одноименные проекции параллельны, параллельны их линии особого положения (горизонтали, фронтали). У параллельных плоскостей также параллельны одноименные следы.

На рис. 40 точка K заключена в плоскость, параллельную плоскости Δ ABC. Плоскость задана пересекающимися прямыми k и n.

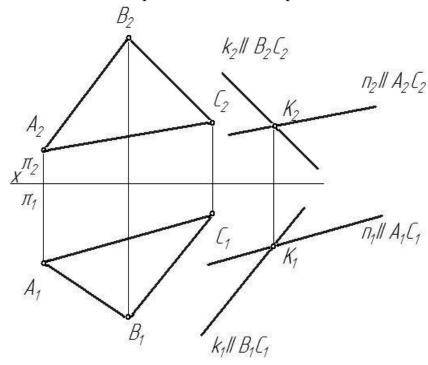
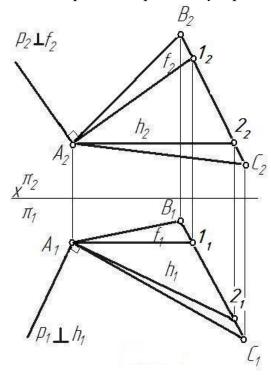
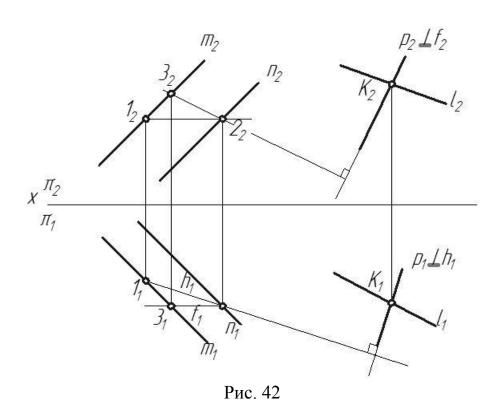


Рис. 40

Перпендикулярность прямой и плоскости, двух плоскостей

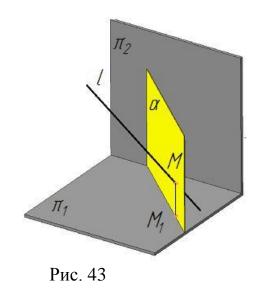
1. Прямая перпендикулярна плоскости, если она перпендикулярна




Рис. 41

двум пересекающимся прямым, лежащим в этой плоскости (в частности этими пересекающимися прямыми могут быть или линии уровня плоскости, или следы плоскости).

У перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали $(p_1 \perp h_1)$, а фронтальная проекция перпендикулярна фронтальной проекции фронтали $(p_2 \perp f_2)$. На рис. 41 в точке A задана прямая, перпендикулярная плоскости Δ ABC.


2. Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости.

Заключим точку K, (рис. 42) в плоскость, перпендикулярную плоскости, заданной параллельными прямыми m // n. Плоскость, которой будет принадлежать точка K, должна содержать перпендикуляр к плоскости заданной параллельными прямыми. Для построения перпендикуляра в плоскости m // n строим пересекающиеся в точке 2 горизонталь h и фронталь f. Из точки K опускаем перпендикуляр на горизонтальную проекцию горизонтали ($p_1 \perp h_1$) и фронтальную проекцию фронтали ($p_2 \perp f_2$). Плоскость, проходящая через точку K, может быть задана любым определителем, возьмем например, пересекающиеся прямые. Проведем через точку K прямую l, пересекающую построенный перпендикуляр p под произвольным углом.

Взаимное пересечение прямой и плоскости, двух плоскостей

1. При построении точки пересечения прямой с проецирующей плоскостью исходят из того, что плоскость, перпендикулярная плоскости проекций, проецируется на нее в прямую линию. Следовательно, на этой прямой и находится соответствующая проекция точки пересечения заданной прямой с проецирующей плоскостью. На рис. 43 приведено наглядное изображение пересечения прямой с проецирующей плоскостью, а на рис. 44 соответствующий эпюр.

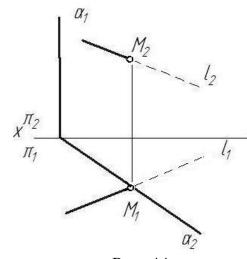


Рис. 44

На эпюре (см. рис. 44), где прямая общего положения l пересекает горизонтально проецирующую плоскость α , заданную следами (горизонтальный след α_l обладает собирательным свойством), нетрудно найти горизонтальную проекцию M_l точки M, одновременно принадлежащей и прямой l и плоскости α . Считая плоскость α непрозрачной, определяем видимость прямой относительно плоскости.

- 2. Для построения точки пересечения прямой с плоскостью общего положения необходимо выполнить следующее:
- 1) через прямую провести некоторую вспомогательную плоскость (прямую заключить во вспомогательную проецирующую плоскость);
 - 2) построить прямую пересечения данной плоскости и вспомогательной;

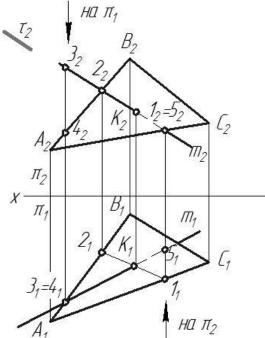


Рис. 45

- 3) определить точку пересечения прямых заданной и построенной, эта точка является искомой;
- 4) определить видимость прямой, считая плоскость непрозрачной.

На рис. 45 приведено решение задачи на определение точки пересечения плоскости α , заданной Δ ABC, с прямой общего положения m.

Через m проводим фронтально проецирующую плоскость τ (след τ_2). I_2 и I_2 и I_2 точки пересечения фронтального следа плоскости τ с I_2 и I_2 и I_2 находим по линиям связи. I_2 прямая, по которой вспомогательная плоскость τ пересекает плоскость σ . Точка пересечения прямой I_2 искомая точка I_2 искомая точка I_2 проекции I_2 пределяем про-

екцию K_2 . Определяем видимость прямой m способом конкурирующих точек. Видимость на плоскость π_1 определена с помощью точек 3 и 4. При взгляде на π_1 точка 3, принадлежащая прямой m, закрывает точку 4, следовательно, на плоскости π_1 до точки пересечения K видима прямая m. Аналогично с помощью конкурирующих точек 1 и 5 определена видимость прямой m на плоскость π_2 .

Определим точку пересечения плоскости β , заданной следами β_1 и β_2 , с прямой общего положения k. На рис. 46 приведено наглядное изображение пересечения прямой общего положения с плоскостью общего положения. На эпюре рис. 47 решение задачи. Прямая k заключена во фротнально проецирующую плоскость γ (след γ_2), определена линия пересечения плоскости β с плоскостью γ . Линия пересечения определяется точками 1 и 2. В пересечении проекции k_1 и 1_12_1 получаем проекцию A_1 искомой точки, проекцию A_2 определяем в проекционной связи. Считая плоскость β непрозрачной, определяем видимость прямой k относительно плоскости.

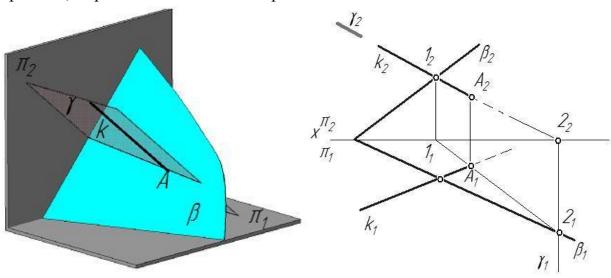
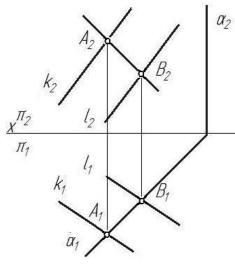
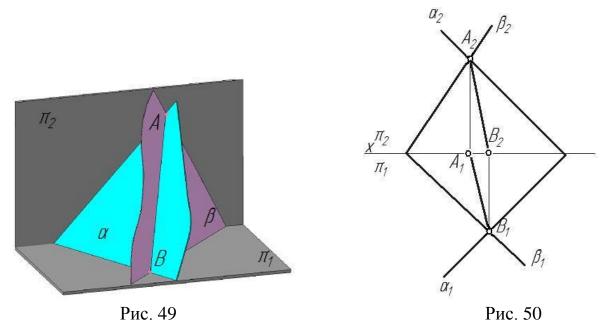


Рис. 46

Рис. 47

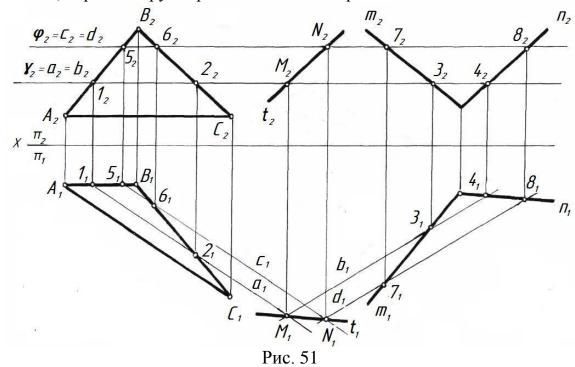



Рис. 48

3. Для построения линии пересечения двух плоскостей необходимо найти какиелибо две точки, каждая из которых принадлежит обеим плоскостям. Эти точки определяют линию пересечения плоскостей.

При построении линии *пересечения плоскости с проецирующей плоскостью* исходят из того, что плоскость, перпендикулярная плоскости проекций α (заданная следами), проецируется на нее в прямую линию (рис. 48). Следовательно, на

этой прямой и находится соответствующая проекция линии пересечения плоскости общего положения β (заданной параллельными прямыми k // l) с проецирующей плоскостью.


4. Рассмотрим пересечение двух плоскостей α и β общего положения, заданных следами. На рис. 49 приведено наглядное изображение пересечения плоскостей α и β , где хорошо видно, что если следы плоскостей пересекаются, то точки их пересечения A и B принадлежат линии пересечения. На рис. 50 приведено решение задачи на эпюре. Из анализа исходного чертежа следует, что горизонтальные следы плоскостей α и β пересекаются в точке B, а фронтальные в точке A, то есть точки A и B - точки, принадлежащие одновременно обеим плоскостям. Именно через эти точки и пройдет прямая AB - линия пересечения плоскостей α и β .

В случае, когда следы двух пересекающихся плоскостей общего положения не пересекаются в пределах чертежа или когда две пересекающиеся плоскости на чертеже заданы не следами, а другими определителями, для построения линии их пересечения следует использовать вспомогательные секущие плоскости частного положения.

Пусть две плоскости общего положения, пересекающиеся под произвольным углом, заданы следующими определителями: $\alpha(ABC)$, β ($m \cap n$). Требуется построить прямую линию t пересечения этих плоскостей. На рис. 51 приведено решение задачи. Для построения линии пересечения плоскостей используем вспомогательные секущие плоскости уровня γ и φ . Вспомогательная секущая плоскость γ пересекает исходные плоскости $\alpha(ABC)$ и β ($m \cap n$) по прямым a и b, которые являются горизонтальными прямыми уровня. Фронтальные проекции этих прямых совпадают с фронтальным следом секущей плоскости $\gamma_2 = a_2 = b_2$. Горизонтальные проекции

этих прямых пересекаются и определяют горизонтальную проекцию точки $M_I = a_I \cap b_I$, через которую проходит искомая прямая t. Вторая вспомогательная секущая плоскость уровня φ позволит определить вторую точку $N = c \cap d$, через которую проходит искомая прямая t.

На рис. 52 приведено решение задачи на пересечение двух плоско-

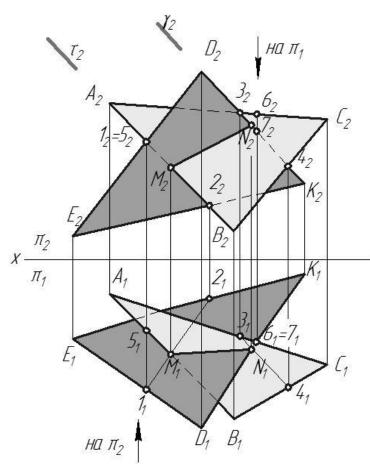


Рис. 52

стей, заданных треугольниками. Точки M и N, принадлежащие линии пересечения плоскостей, построены с помощью фронтально проецирующих плоскостей γ и τ . Плоскость τ (след τ_2), проходит через прямую AB и пересекает плоскость Δ *DEK*. Сторону DE в точке 1, а сторону EK в точке 2. По фронтальным проекциям точек 1_2 и 2_2 в проекционной связи находим проекции l_1 и l_2 . Пересечение горизонтальных проекций I_1 Z_1 и A_1B_1 дают горизонтальную проекцию M_I искомой точки. Проекция лежит на фронтальной проекции A_2B_2 .

Аналогично с помощью плоскости γ (след γ_2), проходящей через DK, построены проекции N_1 и N_2 второй точки. Проекции M_1 N_1 и M_2 N_2 – проекции отрезка, по которому пересекаются заданные треугольники.

Анализ видимости треугольников выполнен с помощью конкурирующих точек. Во фронтальной проекции проанализированы точки 1 и 5, принадлежащие, соответственно, скрещивающимся прямым DE и AB. На фронтальной плоскости проекции 1_2 и 5_2 совпадают. На горизонтальной проекции видно, что при взгляде на π_2 точка 1 закрывает точку 5. Следовательно, прямая DE закрывает прямую AB. Видимость на горизонтальной плоскости проекций определена с помощью точек 6 и 7, лежащих на прямых AC и DK. Горизонтальные проекции точек 6_1 и 7_1 совпадают. На фронтальной проекции видно, что при взгляде на π_1 точка 6 закрывает точку 7. Следовательно, прямая AC закрывает прямую DK.

Графические работы по теме «Позиционные задачи»

Целью работ является закрепление умений и навыков по выполнению на комплексном чертеже следующих построений:

- 1) проекций точки, прямой, плоскости;
- 2) углов наклона плоскости к плоскостям проекций;
- 3) взаимно параллельных плоскостей;
- 4) точки пересечения прямой и плоскости;
- 5) взаимно перпендикулярных прямых и плоскостей;
- 6) линии пересечения двух плоскостей.

Объем и оформление работы

- 1. Работы выполняется на листе формата A3 (297×420).
- 2. Промежуточные и вспомогательные построения (оси проекций, линии связи, прямые уровня) выполняются тонкими (**яркими и четкими**!) линиями.
- 3. Все точки следует фиксировать маленькими окружностями (Ø 2 мм) и обязательно обозначать.
- 4. Обозначения располагать параллельно горизонтальной линии рамки чертежа и выполнять чертежным шрифтом № 5 в соответствии с ГОСТ 2.304-81.

Содержание и порядок выполнения работы на пересечение прямой и плоскости

В работе заданы координаты вершин треугольника A, B, C и отрезка прямой D, E. Значения координат приведены в табл. 1.

Таблица 1

No	A			В				С			D		Е			
вар.	X	у	Z	X	у	Z	X	у	Z	X	у	Z	X	у	Z	
1	63	40	75	48	15	15	15	60	37	75	37	23	18	20	47	
2	70	15	15	48	75	68	15	30	8	85	25	68	15	60	15	
3	75	37	15	45	8	68	18	60	23	72	60	40	15	12	10	
4	62	39	73	48	16	15	9	45	40	75	37	24	16	20	52	
5	70	14	14	48	75	70	12	27	8	74	24	66	15	60	14	
6	72	36	12	45	8	66	18	57	22	70	60	39	15	12	12	
7	60	37	75	53	15	17	15	45	37	72	36	24	15	18	52	
8	71	15	14	45	72	68	15	30	8	82	23	68	17	63	15	
9	75	36	15	48	8	68	15	60	24	72	60	30	15	14	15	
10	63	39	72	54	15	14	18	43	37	75	37	23	16	21	52	
11	72	15	12	45	72	70	15	30	6	82	24	66	15	58	14	
12	75	36	14	42	8	66	18	60	22	75	60	37	14	14	14	
13	65	37	74	53	15	14	14	45	37	72	37	24	18	18	52	
14	68	15	16	48	72	70	15	30	8	74	24	70	14	58	14	
15	78	38	12	45	8	68	22	60	21	71	60	39	15	15	15	
16	63	39	75	53	15	15	15	48	36	75	37	20	20	20	52	
17	71	15	14	48	74	68	15	30	6	75	22	67	15	60	14	
18	75	36	15	45	8	72	18	63	23	72	60	38	12	12	12	
19	60	39	75	51	15	15	14	45	37	71	39	25	17	18	53	
20	68	15	15	45	75	75	15	30	8	74	23	68	15	60	15	

Требуется:

- 1. По заданным координатам вершин построить чертеж плоскости и прямой.
 - 2. Построить точку пересечения прямой и плоскости (см. рис. 45).
 - 3. Определить видимость прямой (см. рис. 45).
- 4. Определить угол наклона треугольника к плоскостям проекций π_1 и π_2 (см. рис. 40).

Пример выполнения и оформления графической работы показан на рис. 53.

Для рационального размещения чертежа на формате работу следует сначала выполнить на черновике. Проконсультироваться с преподавателем относительно правильности решения задачи и после этого оформить работу в чистовом варианте.

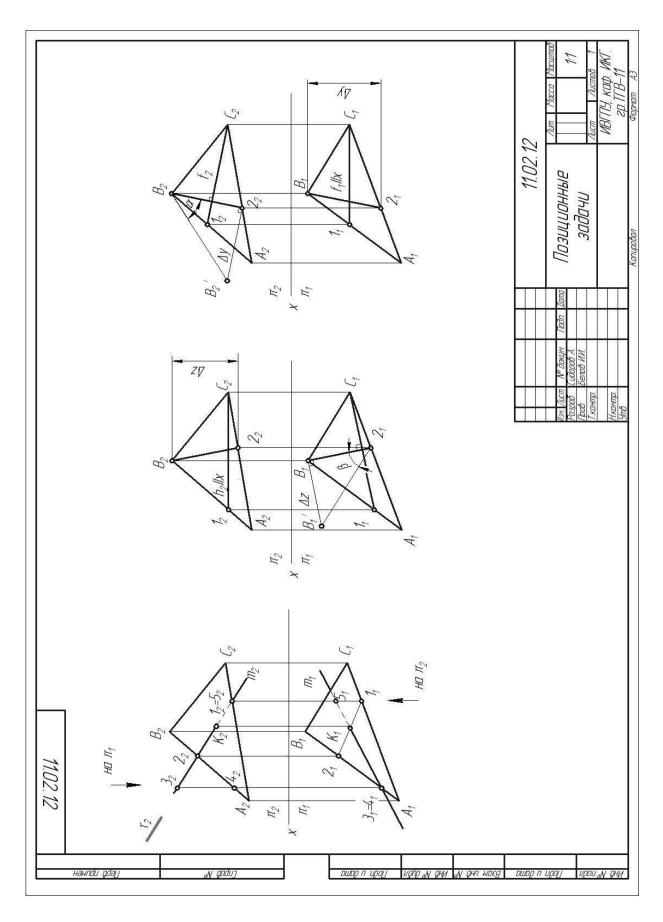


Рис. 53

Содержание и порядок выполнения работы на пересечение двух плоскостей

В работе заданы координаты вершин треугольников A, B, C и D, E, K. Значения координат приведены в табл. 2.

Таблица 2

№ вар.	A			В			С			D			Е			К		
	X	У	Z	X	у	Z	X	у	Z	X	У	Z	X	у	Z	X	у	Z
1	117	90	9	52	25	79	0	83	48	68	110	85	135	19	36	14	52	0
2	120	90	10	50	25	80	0	85	50	70	110	85	135	20	35	15	50	0
3	115	90	10	52	25	80	0	80	45	65	105	80	130	18	35	12	50	0
4	120	92	10	50	20	75	0	80	46	70	115	85	135	20	32	10	50	0
5	117	9	90	52	79	25	0	48	83	68	85	110	135	36	19	14	0	52
6	115	7	85	50	80	25	0	50	85	70	85	110	135	40	20	15	0	50
7	120	10	90	48	82	20	0	52	82	65	80	110	130	38	20	15	0	52
8	116	8	8	50	78	25	0	46	80	70	85	108	135	36	20	15	0	52
9	115	10	92	50	80	25	0	50	85	70	85	110	135	35	20	15	0	50
10	18	10	90	83	79	25	135	48	83	67	85	110	0	36	19	121	0	52
11	20	12	92	85	80	25	135	50	85	70	85	110	0	35	20	120	0	52
12	15	10	85	80	80	20	130	50	80	70	80	108	0	35	20	120	0	50
13	16	12	88	85	80	25	130	50	80	75	85	110	0	30	15	120	0	50
14	18	12	85	85	80	25	135	50	80	70	85	110	0	35	20	120	0	50
15	18	90	10	83	25	79	135	83	48	67	110	85	0	19	36	121	52	0
16	18	40	75	75	117	6	135	47	38	67	20	0	0	111	48	121	78	86
17	18	79	40	85	7	107	135	38	47	67	0	20	0	48	111	121	86	78
18	117	75	40	52	6	107	0	38	47	135	0	20	86	48	111	15	68	78
19	0	83	48	55	25	79	117	90	10	68	110	85	135	20	36	14	52	0
20	120	10	90	48	82	20	0	52	82	15	0	52	130	38	20	65	80	110

Требуется:

- 1. По заданным координатам вершин построить чертеж двух пересекающихся плоскостей, заданных ΔABC и ΔEDK .
 - 2. Построить линию пересечения двух плоскостей (см. рис. 52).
 - 3. Определить видимость плоскостей (см. рис. 52).
- 4. Построить перпендикуляр к плоскости треугольника *ABC*, проходящий через одну из вершин этого треугольника (см. рис. 41).
- 5. Построить плоскость, параллельную плоскости треугольника ABC и проходящую через произвольную точку, выбранную на перпендикуляре (см. рис. 40).

Пример выполнения и оформления графической работы показан на рис. 53.

Проанализировав координаты точек *A*, *B*, *C*, *D*, *E*, *K*, нужно начертить оси координат. Согласно своему варианту из таблицы берутся координаты вершин треугольников. Стороны треугольников и другие вспомогательные прямые проводятся вначале тонкими сплошными линиями. Линия пересечения треугольников строится по точкам пересечения сторон одного треугольника с плоскостью другого треугольника (рис. 54). Видимость сторон треугольника определяется способом конкурирующих точек. Видимые отрезки сторон треугольников выделяются сплошными толстыми линиями, невидимые тонкими штриховыми линиями.

Из одной из вершин треугольника ABC проводится перпендикуляр к плоскости этого треугольника (см. рис. 41). На перпендикуляре выбирается произвольная точка, через которую проводится плоскость, параллельная плоскости треугольника ABC (см. рис. 40).

Для рационального размещения чертежа на формате работу следует сначала выполнить на черновике. Проконсультироваться с преподавателем относительно правильности решения задачи и после этого оформить работу в чистовом варианте. Для наглядности расположения треугольников относительно друг друга один из них следует выделить тонировкой или заштриховать.

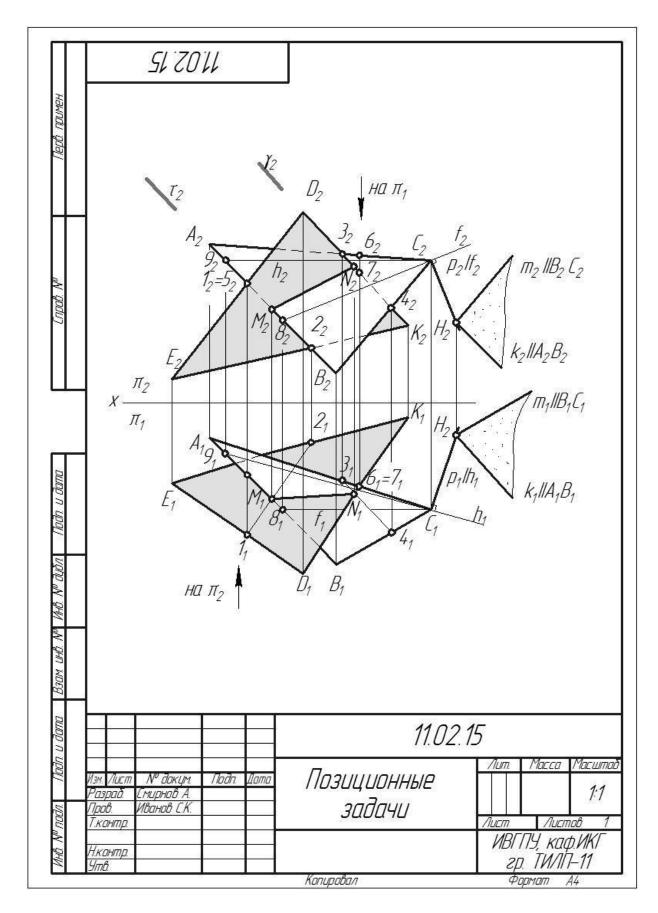


Рис. 54

Библиографический список

- 1. Гордон, В.О., Семенцов-Огиевский, М.А. Курс начертательной геометрии: учеб. пособие / В.О. Гордон, М.А. Семенцов-Огиевский, под ред. Ю.Б. Иванова 23-е изд., перераб. М.: Наука, 1988. 274 с.
- 2. Фролов, С.А. Начертательная геометрия: учебник. / С.А.Фролов. 3-е изд., перераб. и доп. М.: Инфра-М, 2008. 286 с.
- 3. Фролов, С.А. Начертательная геометрия: Сборник задач: учебное пособие для машиностроительных и приборостроительных спец. вузов / С.А. Фролов. 3-е изд., испр. М.: Инфра-М, 2010. 172 с.
- 4. Чекмарев, А.А. Начертательная геометрия и черчение: Учеб. для студ. высш. учеб. заведений / А.А. Чекмарев 2-е изд., перераб. и доп. М.: ВЛАДОС, 2002. 472 с:
- 5. Боголюбов, С. К. Инженерная графика : Учебник для средних спец. учеб. заведений / С. К. Боголюбов. 3 изд., испр. и доп.- М. : Машиностроение, 2009. 392 с